
Methods  
General formulation  

Some necessary or/and sufficient conditions are known (See Optimality conditions. KKT and Convex 
optimization problem' %})

In fact, there might be very challenging to recognize the convenient form of optimization problem.
Analytical solution of KKT could be inviable.

Iterative methods  

Typically, the methods generate an infinite sequence of approximate solutions

which for a finite number of steps (or better - time) converges to an optimal (at least one of the optimal) 
solution  .
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def GeneralScheme(x, epsilon):
    while not StopCriterion(x, epsilon):
        OracleResponse = RequestOracle(x)
        x = NextPoint(x, OracleResponse)
    return x
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Oracle conception  

f(xk), f’(x k), f’’( xk)

ORACLE

Black - box

xk

Complexity  

Challenges  

Unsolvability  

In general, optimization problems are unsolvable.  ¯\(ツ)/¯

Consider the following simple optimization problem of a function over unit cube:

We assume, that the objective function  is Lipschitz continuous on
:

with some constant  (Lipschitz constant). Here  - the -dimensional unit cube 

Our goal is to find such  for some positive . Here  is the global minima of the 
problem. Uniform grid with  points on each dimension guarantees at least this quality:

which means, that
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Our goal is to find the  for some . So, we need to sample  points, since we need to measure 
function in  points. Doesn't look scary, but if we'll take , computations on the 
modern personal computers will take 31,250,000 years.

Stopping rules  

Argument closeness: 

Function value closeness: 

Closeness to a critical point

But  and  are unknown!

Sometimes, we can use the trick:

Note: it's better to use relative changing of these values, i.e. .

Local nature of the methods  

Rates of convergence  
Speed of convergence  
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In order to compare perfomance of algorithms we need to define a terminology for different types of 
convergence.
Let  be a sequence in  that converges to some point 

Linear convergence  

We can define the linear convergence in a two different forms:

for all sufficiently large . Here  and . This means that the distance to the solution  
decreases at each iteration by at least a constant factor bounded away from . Note, that sometimes this 
type of convergence is also called exponential or geometric.

Superlinear convergence  

The convergence is said to be superlinear if:

where  or , . Note, that superlinear convergence is also linear convergence 
(one can even say, that it is linear convergence with ).

Sublinear convergence  

where  and . Note, that sublinear convergence means, that the sequence is converging 
slower, than any geometric progression.

Quadratic convergence  

where  and .

☒ - IKR

(exponential) H
,
- x*t=qR d

11×2-511 -_q2R
12-1*+41 __q3R

Hanoi . ueaeuitade
2Pa UK

-

- npauaa

Onna-

-

III.
8 t

0
-



Quasi-Newton methods for unconstrained optimization typically converge superlinearly, whereas Newton’s 
method converges quadratically under appropriate assumptions. In contrast, steepest descent algorithms 
converge only at a linear rate, and when the problem is ill-conditioned the convergence constant  is close 
to .

How to determine convergence type  

Root test  

Let  be a sequence of non-negative numbers,
converging to zero, and let 

If , then  has linear convergence with constant . 
In particular, if , then  has superlinear convergence.
If , then  has sublinear convergence.
The case  is impossible.

Ratio test  

Let  be a sequence of strictly positive numbers converging to zero. Let

If there exists  and , then  has linear convergence with constant .
In particular, if , then  has superlinear convergence.

If  does not exist, but , then  has linear convergence with a 

constant not exceeding . 

If , then  has sublinear convergence. 

The case  is impossible. 

In all other cases (i.e., when ) we cannot claim anything 

concrete about the convergence rate .

References  
Code for convergence plots - Open in Colab
CMC seminars (ru)
Numerical Optimization by J.Nocedal and S.J.Wright

Line search  
Problem  
Suppose, we have a problem of minimization of a function  of scalar variable:
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Sometimes, we refer to the similar problem of finding minimum on the line segment :

Line search is one of the simplest formal optimization problems, however, it is an important link in solving 
more complex tasks, so it is very important to solve it effectively. Let's restrict the class of problems under 
consideration where  is a unimodal function.

Function  is called unimodal on , if there is , that 
 and 

Key property of unimodal functions  
Let  be unimodal function on . Than if , then:

if 
if 

Code
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Code  
Open in Colab

References  
CMC seminars (ru)

Binary search  
Idea  
We divide a segment into two equal parts and choose the one that contains the solution of the problem 
using the values of functions. 

Algorithm  

def binary_search(f, a, b, epsilon):
    c = (a + b) / 2
    while abs(b - a) > epsilon:
        y = (a + c) / 2.0
        if f(y) <= f(c):
            b = c
            c = y
        else:
            z = (b + c) / 2.0
            if f(c) <= f(z):
                a = y
                b = z
            else:
                a = c
                c = z
    return c



Bounds  
The length of the line segment on -th iteration:

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration : 

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is 
, which implies:

By marking the right side of the last inequality for , we get the number of method iterations needed to 
achieve  accuracy:

Golden search  
Idea  
The idea is quite similar to the dichotomy method. There are two golden points on the line segment (left 
and right) and the insightful idea is, that on the next iteration one of the points will remain the golden point.
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lk rk

lk+1 rk+1 lk+1 rk+1

k iteration

k+1 iteration

Algorithm  

Bounds  

where .

The geometric progression constant more than the dichotomy method -  worse than 
The number of function calls is less than for the dichotomy method -  worse than  - (for 
each iteration of the dichotomy method, except for the first one, the function is calculated no more 
than 2 times, and for the gold method - no more than one)

Successive parabolic interpolation  
Idea  

def golden_search(f, a, b, epsilon):
    tau = (sqrt(5) + 1) / 2
    y = a + (b - a) / tau**2
    z = a + (b - a) / tau
    while b - a > epsilon:
        if f(y) <= f(z):
            b = z
            z = y
            y = a + (b - a) / tau**2
        else:
            a = y
            y = z
            z = a + (b - a) / tau
    return (a + b) / 2
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Sampling 3 points of a function determines unique parabola. Using this information we will go directly to its 
minimum. Suppose, we have 3 points  such that line segment  contains minimum of 
a function . Then, we need to solve the following system of equations:

Note, that this system is linear, since we need to solve it on . Minimum of this parabola will be 
calculated as:

Note, that if , than  will lie in 

Algorithm  

Bounds  
The convergence of this method is superlinear, but local, which means, that you can take profit from using 
this method only near some neighbour of optimum.

Inexact line search  
This strategy of inexact line search works well in practice, as well as it has the following geometric 
interpretation:

Sufficient decrease

def parabola_search(f, x1, x2, x3, epsilon):
    f1, f2, f3 = f(x1), f(x2), f(x3)
    while x3 - x1 > epsilon:
        u = x2 - ((x2 - x1)**2*(f2 - f3) - (x2 - x3)**2*(f2 - f1))/(2*((x2 - x1)*(f2 - 
f3) - (x2 - x3)*(f2 - f1)))
        fu = f(u)

        if x2 <= u:
            if f2 <= fu:
                x1, x2, x3 = x1, x2, u
                f1, f2, f3 = f1, f2, fu
            else:
                x1, x2, x3 = x2, u, x3
                f1, f2, f3 = f2, fu, f3
        else:
            if fu <= f2:
                x1, x2, x3 = x1, u, x2
                f1, f2, f3 = f1, fu, f2
            else:
                x1, x2, x3 = u, x2, x3
                f1, f2, f3 = fu, f2, f3
    return (x1 + x3) / 2
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Sufficient decrease  
Let's consider the following scalar function while being at a specific point of : 

consider first order approximation of  :

A popular inexact line search condition stipulates that  should first of all give sufficient decrease in the 
objective function , as measured by the following inequality:

for some constant . (Note, that  stands for the first order Taylor approximation of ). 
This is also called Armijo condition. The problem of this condition is, that it could accept arbitrary small 
values , which may slow down solution of the problem. In practice,  is chosen to be quite small, say 

.

Curvature condition  
To rule out unacceptably short steps one can introduce a second requirement:

for some constant , where  is a constant from Armijo condition. Note that the left-handside is 
simply the derivative , so the curvature condition ensures that the slope of  at the target point 
is greater than  times the initial slope . Typical values of  for Newton or quasi-
Newton method. The sufficient decrease and curvature conditions are known collectively as the Wolfe 
conditions.

Goldstein conditions  
Let's consider also 2 linear scalar functions :

and

Note, that Goldstein-Armijo conditions determine the location of the function  between  and 
. Typically, we choose  and , while .
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References  
Numerical Optimization by J.Nocedal and S.J.Wright.

Example 1  

Show with the definition that the sequence  does not have a linear convergence rate (but it 

converges to zero).
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Example 2  

Determine the convergence or divergence of a given sequence .

Example 3  

Show with the definition that the sequence  does not have a quadratic convergence rate (but it 

converges to zero).

Example 4  

-

¥"

,

-

E-

¥
lim ru
K→



Determine the convergence or divergence of a given sequence .

Example 5  

Determine the convergence or divergence of a given sequence .

Example 6  
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Show that the sequence  is quadratically converged to .

Example 7  

Determine the convergence or divergence of a given sequence .

Example 8  



Determine the convergence or divergence of a given sequence .

Example 9  

Let  be a sequence of non-negative numbers and let  be some integer. Prove that sequence 
 is linearly convergent with constant  if and only if a the sequence  converged linearly 

with constant .

Example 10  



Consider the function . 

    

    Consider the following modification of solution localization method, in which the interval  is divided 
into  parts in a fixed proportion of  (maximum twice at iteration - as in the 
dichotomy method). Experiment with different values of  and plot the dependence of  - the 
number of iterations needed to achieve  - accuracy from the  parameter. Consider . Note that 
with  this method is exactly the same as the dichotomy method.



Example 11  

Show that if , there may be no step lengths that satisfy the Wolfe conditions (sufficient 
decrease and curvature condition).

Example 12  

Show that the one-dimensional minimizer of a strongly convex quadratic function
always satisfies the Goldstein conditions


