
Optimality conditions. KKT  
Background  

Extreme value (Weierstrass) theorem  

Let  be compact set and  continuous function on . So that, the point of the global
minimum of the function  on  exists.

Lagrange multipliers  

Consider simple yet practical case of equality constraints:

The basic idea of Lagrange method implies switch from conditional to unconditional optimization
through increasing the dimensionality of the problem:

General formulations and conditions  

We say that the problem has a solution if the budget set is not empty: , in which the
minimum or the infimum of the given function is achieved.

Optimization on the general set .  

Direction  is a feasible direction at  if small steps along  do not take us
outside of .

Consider a set  and a function . Suppose that  is a point of local
minimum for  over , and further assume that  is continuously differentiable around .

1. Then for every feasible direction  at  it holds that 
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2. If, additionally,  is convex then
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Unconstrained optimization  

General case  

Let  be a twice differentiable function.

If  - is a local minimum of , then:

If  at some point  satisfies the following conditions:

then (if necessary condition is also satisfied)  is a local minimum(maximum) of .

Note, that if , i.e. the hessian is positive semidefinite, we cannot be
sure if
  is a local minimum (see Peano surface ).

Convex case  

It should be mentioned, that in convex case (i.e.,  is convex) necessary condition becomes
sufficient. Moreover, we can generalize this result on the class of non-differentiable convex
functions.

Let  - convex function, then the point  is the solution of  if and only if:

One more important result for convex constrained case sounds as follows. If  -
convex function defined on the convex set , then:

Any local minima is the global one.
The set of the local minimizers  is convex.
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If  - strictly or strongly (different cases 😀) convex function, then  contains only one
single point .

Optimization with equality conditions  

Intuition  

Things are pretty simple and intuitive in unconstrained problem. In this section we will add one
equality constraint, i.e.

We will try to illustrate approach to solve this problem through the simple example with 
 and 
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Generally: in order to move from  along the budget set towards decreasing the function, we
need to guarantee two conditions:

Let's assume, that in the process of such a movement we have come to the point where

Then we came to the point of the budget set, moving from which it will not be possible to reduce
our function. This is the local minimum in the constrained problem :)
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So let's define a Lagrange function (just for our convenience):

Then the point  be the local minimum of the problem described above, if and only if:

We should notice that .

General formulation  

Solution

af://n1666


Let  and  be twice differentiable at the point  and continuously differentiable in some
neighborhood . The local minimum conditions for  are written as

Depending on the behavior of the Hessian, the critical points can have a different character.

Optimization with inequality conditions  

Example  
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Easy in this case! 
Just use unconstrained 
optimality conditions.
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Thus, if the constraints of the type of inequalities are inactive in the constrained problem, then
don't worry and write out the solution to the unconstrained problem. However, this is not the
whole story 🤔. Consider the second childish example

x1

x2

x1

x2 f(x) = (x1-1)2+(x2+1)2

x*

minimum of f(x)

iso-contours of f(x)

x1

x2

x1

x2 f(x) = (x1-1)2+(x2+1)2

minimum of f(x)
feasible region g(x) ≤ 0

g(x) = x1
2+x2

2-1



x1

x2

x1

x2 f(x) = (x1-1)2+(x2+1)2

g(x) = x1
2+x2

2-1 

How can we recognize that 
some feasible point is at 
local minimum?

xF

x1

x2

x1

x2 f(x) = (x1-1)2+(x2+1)2

xF

Not very easy in this case! 
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Necessary conditions 
 


,  

Sufficient conditions 
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So, we have a problem:

Two possible cases:

Combining two possible cases, we can write down the general conditions for the problem:



Let's define the Lagrange function:

Then  point - local minimum of the problem described above, if and only if:

It's noticeable, that . Conditions  are the first scenario
realization, and conditions  - the second.

General formulation  

This formulation is a general problem of mathematical programming.

The solution involves constructing a Lagrange function:

Karush-Kuhn-Tucker conditions  
 

Necessary conditions  

Let ,  be a solution to a mathematical programming problem with zero duality gap (the
optimal value for the primal problem  is equal to the optimal value for the dual problem ).Let
also the functions  be differentiable.

Some regularity conditions  

These conditions are needed in order to make KKT solutions necessary conditions. Some of them
even turn necessary conditions into sufficient (for example, Slater's). Moreover, if you have
regularity, you can write down necessary second order conditions 
with semi-definite hessian of Lagrangian.
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Slater's condition. If for a convex problem (i.e., assuming minimization,  are convex
and  are affine), there exists a point  such that  and . (Existance of
strictly feasible point), than we have a zero duality gap and KKT conditions become necessary
and sufficient.
Linearity constraint qualification If  and  are affine functions, then no other condition
is needed.
For other examples, see wiki.

Sufficient conditions  

For smooth, non-linear optimization problems, a second order sufficient condition is given as
follows. The solution , which satisfies the KKT conditions (above) is a constrained local
minimum if for the Lagrangian,

the following conditions holds:

References  
Lecture on KKT conditions (very intuitive explanation) in course "Elements of Statistical
Learning" @ KTH.
One-line proof of KKT

Example 1  

Linear Least squares Write down exact solution of the linear least squares problem:

Consider three cases:

1. 
2. 
3. 
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