Duality

Duality lets us associate to any constrained optimization problem, a concave maximization
problem whose solutions lower bound the optimal value of the original problem. What is
interesting is there are cases, when one can solve the primal problem by first solving the dual
one. Now, consider general constrained optimization problem:

Primal: f(z) — min Dual: g(y) — max
zES yeN

We'll build g(y), that preserves uniform bound:
9(y) < f(z) Vz e S, Vyen

As a consequence:
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We'll consider one (of the many) possible way to construct g(y) in cg&e, when we have general

mathematical programming problem with functional constraints; \ﬁuuaa ™MaKel 50.8 I 7
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And the Lagrangian, associated with this problem: \(‘
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We define the Lagrange dual function (or just dual function) g ¢ Fthe minimum
value of the Lagrangian over z: for A € R™, v € R? X# DUQ‘Q
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When the Lagrangian is unbounded below in x, the dual function takes on the value —oo. Since 93“ 3\)
the dual function is the pointwise infimum of a family of affine functions of (), v), it is concave,

even when the original problem is not convex.

The dual function yields lower bounds on thq optimal value p* of the original problem} For any

A=0,v: \d 3\’0
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Suppose som@—is a feasible poi@or the original problem, i.e., f;(2) < 0 and
hi(Z) =0, A > 0.Then we):%/e:
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A natural question is: What is the best lower bound that can be obtained from the Lagrange dual

function. This leads to the following optimization problem: D \AGQ P\QO BL =em
g\ v) — \max 9 @0\1(’1@&“&’&
st A= 0 309ate

The term dual feasible, to describe a pair (A, v) with A = 0 and g(\, v) > —o0, now makes
sense. It means, as the name implies, that (A, V) is feasible for the dual problem. We refer to
(A*,v*) as dual optimal or optimal Lagrange multipliers if they are optimal for the above

problem.
Summary
Primal Dual
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Weak duality Ui =N
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It is common to name this relation between optimals of primal and dual problems as weak /\

duality. For problem, we have: <+ < *

While the difference between them is often called duality_gap: ‘5A BOP “Bﬂ BO(I\—C‘[BEH“OW/
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Note, that we always have weak duality, if we've formulated primal and dual problem. It means,

that if we were managed to solve dual problem (which is always convex, no matter the initial

problem was or not), than we have some lower bound. Surprisingly, there are some‘quf)ﬁjble
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cases, when these solutions are equal.

Strong duality

Strong duality if duality gap is zero:
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e Construction of lower bound on solution of the direct problem.

It could be very complicated to solve the initial pr. m. But if we have the dual problem, we ~
can take an arbitra@nd substitute it we'll immediately obtain s;:we Iowir P = ] T

Useful features

bound.

e Checking for the problem'’s solvability and attainability of the solution. :ﬁ .’;O
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From the inequality max g(y) < min f(x) follows: i
ye zeS
vice versa.

e Sometimes it is easier to solve a dual problem than a primal one.

In this case, if the strong duality holds: g(y*) = f(z*) we lose nothing. < ©
£ * Obtaining a lower bound on the function’s residual. V\& ET (8) é P = ‘Fo
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e Dual function is always concave
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Examples b borigo o ’E’g@
Simple projection onto simplex with duality —_—

To find the Euclidean projection of € R™ onto probability simplex
P={z€R"| 2= 0,1"2z= 1}, we solve the following problem:

Lyl = mi
— — min
2 Y=z yeR?>0

s.t. lTy =1

1
Hint: Consider the problem of minimizing 5 |y — z||3 subject to subjecttoy = 0,1 "y = 1. Form
the partial Lagrangian
1
L{y,v) = 5 lly - 2|3 +v(1'y - 1),

leaving the constraint y > 0 implicit. Show that y = (z — v1) minimizes L(y, v) over y >~ 0.
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Then we have weak duality: p* > d*. Furthermore, if the functions f and g are convex and
A(relint(E)) Nrelint(G) # @, then we have strong duality: p* = d*. While points

z* € ENAYG)and \* € G, N (—A*)"1(E,) are optimal values for primal and dual
problem if and only if:

AN € Of(2Y)
A* € 0g(Ax™)

Convex case is especially important since if we have Fenchel - Rockafellar problem with
parameters (f, g, A), than the dual problem has the form (f*, g*, —A*).
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