Duality

Duality lets us associate to any constrained optimization problem, a concave maximization problem whose solutions lower bound the optimal value of the original problem. What is interesting is there are cases, when one can solve the primal problem by first solving the dual one. Now, consider general constrained optimization problem:

$$ext{Primal: } f(x) o \min_{x \in S} \quad ext{ Dual: } g(y) o \max_{y \in \Omega} ext{ }$$

We'll build g(y), that preserves uniform bound:

$$g(y) \leq f(x) \qquad orall x \in S, orall y \in \Omega$$

As a consequence:

$$\max_{y\in\Omega}g(y)\leq\min_{x\in S}f(x)$$

$$\chi^*$$
 - optimal solution
 $p^* = f_0(x^*)$ - optimal value

BOITY KADE

Dual

+ 99`

We'll consider one (of the many) possible way to construct g(y) in case, when we have general задага = 0177? Korga makas mathematical programming problem with functional constraints:

$$\begin{array}{l} f_{0}(x) \rightarrow \min \\ f_{i}(x) \leq 0 \\ Ax = B \end{array} \qquad \begin{array}{l} f_{0}(x) \rightarrow \min \\ s.t. \ f_{i}(x) \leq 0, \ i = 1, \dots, m \\ h_{i}(x) = 0, \ i = 1, \dots, p \end{array} \qquad \begin{array}{l} = \operatorname{sagaza} \quad \operatorname{BolityKADI} \\ f_{0}, \ f_{i} - BolityKADI \\ f_{0}, \ f_{i} - BolityKADI \\ h_{i}(x) = 0, \ i = 1, \dots, p \end{array}$$

And the

e Lagrangian, associated with this problem:

$$L(x,\lambda,\mu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) = f_0(x) + \lambda^\top f(x) + \nu^\top h(x) + \mu^\top h(x)$$

We define the Lagrange dual function (or just dual function) g Ξ $\mathbb R$ \widetilde{ast} the minimum value of the Lagrangian over x: for $\lambda \in \mathbb{R}^m,
u \in \mathbb{R}^p$ infimum

$$g(\lambda,\nu) = \inf_{x \in \text{dom}f_0} L(x,\lambda,\nu) = \inf_{x \in \text{dom}f_0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

$$= \text{function}$$

When the Lagrangian is unbounded below in x, the dual function takes on the value $-\infty$. Since the dual function is the pointwise infimum of a family of affine functions of (λ, ν) , it is concave, even when the original problem is not convex.

The dual function yields lower bounds on the optimal value p^* of the original problem. For any $\lambda \succeq 0, \nu$: A 7'1 ancorrege bange 1

Suppose some
$$\hat{x}$$
 is a feasible point $(\hat{x} \in S)$ for the original problem, i.e., $f_i(\hat{x}) \leq 0$ and
 $h_i(\hat{x}) = 0, \ \lambda \geq 0$. Then we have:
 $L(\hat{x}, \lambda, \lambda) = f_0(\hat{x}) + \lambda^\top f(\hat{x}) + \nu^\top h(\hat{x}) \leq f_0(\hat{x})$
Hence
 $g(\lambda, \nu) = \inf_{x \in \text{dom} f_0} L(x, \lambda, \nu) \leq L(\hat{x}, \lambda, \lambda) \leq f_0(\hat{x})$
 $g(\lambda, \nu) = \inf_{x \in \text{dom} f_0} L(x, \lambda, \nu) \leq L(\hat{x}, \lambda, \lambda) \leq f_0(\hat{x})$
 $g(\lambda, \nu) = \inf_{x \in \text{dom} f_0} L(x, \lambda, \nu) \leq L(\hat{x}, \lambda, \lambda) \leq f_0(\hat{x})$

A natural question is: What is the best lower bound that can be obtained from the Lagrange dual function. This leads to the following optimization problem: PROBLEM Dual

$$g(\lambda,
u) o \max_{\lambda \in \mathbb{R}^m,
u \in \mathbb{R}^p} \ ext{ s.t. } \lambda \succeq 0$$

D bou cibernas zagara

3A30P A BOUCTBEHHOOT

CIEUTEP

4

The term dual feasible, to describe a pair (λ, ν) with $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$, now makes sense. It means, as the name implies, that (λ, ν) is feasible for the dual problem. We refer to (λ^*, ν^*) as dual optimal or optimal Lagrange multipliers if they are optimal for the above problem.

Summary

	Primal	Dual
Function	$f_0(x)$	$g(\lambda, u) = \min_{x\in \operatorname{\mathbf{dom}} f_0} L(x,\lambda, u)$
Variables	$x\in \mathbf{dom} f_0\subseteq \mathbb{R}^{ extsf{m}}$	$\lambda \in \mathbb{R}^m_+, u \in \mathbb{R}^m$
Constraints	$f_i(x) \leq 0, \; i=1,\ldots,m \ h_i(x)=0, \; i=1,\ldots,p$	$\lambda_i \geq 0, orall i \in \overline{1,m}$
Problem	$egin{aligned} &f_0(x) o\min_{x\in\mathbb{R}^n}\ ext{s.t.}\ f_i(x)\leq 0,\ i=1,\ldots,m\ &h_i(x)=0,\ i=1,\ldots,p \end{aligned}$	$egin{aligned} g(\lambda, u) & o \max_{\lambda \in \mathbb{R}^m, u \in \mathbb{R}^p} \ ext{ s.t. } \lambda \succeq 0 \end{aligned}$
Optimal	$x^* ext{ if feasible,} \ p^* = f_{oldsymbol{O}} x^*)$	$\lambda^*, u^* ext{ if max is achieved}, \ d^* = g(\lambda^*, u^*)$

Weak duality

It is common to name this relation between optimals of primal and dual problems as weak duality. For problem, we have: $d^{\dagger} \leq P$

$$p^* \geq d^*$$

While the difference between them is often called **duality gap:**

$$p^*-d^*\geq 0$$

Note, that we always have weak duality, if we've formulated primal and dual problem. It means, that if we were managed to solve dual problem (which is always convex, no matter the initial problem was or not), than we have some lower bound. Surprisingly, there are some motable cases, when these solutions are equal.

Strong duality Strong duality if duality gap is zero: $p^* = d^*$

 $f(y) - f(x) \ge Notice; both <math>p^*$ and d^* may be $+\infty$.

14-91 L

Several sufficient conditions known!

"Easy" necessary and sufficient conditions: unknown. Collx-81 OE Of (xk) xkr = xk+d

Useful features

	•	Construction of lower bound on solution of the direct problem. $\mathcal{G} = (\mathcal{A}, \mathcal{J})$
		It could be very complicated to solve the initial problem. But if we have the dual problem, we can take an arbitrary $y \in \Omega$ and substitute it in $a(y)$ we'll immediately obtain some lower $\rho \gg 1$ MNH bound.
	•	Checking for the problem's solvability and attainability of the solution. $\Im = \bigcirc$
		From the inequality $\max_{y\in\Omega}g(y)\leq\min_{x\in S}f(x)$ follows: if $\min_{x\in S}f(x)=-\infty$, then $\Omega=arnothing$ and
		vice versa. $min L(x, \lambda y)$
	•	Sometimes it is easier to solve a dual problem than a primal one. λ
		In this case, if the strong duality holds: $g(y^*)=f(x^*)$ we lose nothing.
t	•	Obtaining a lower bound on the function's residual. $\forall \gamma \ g(\gamma) \leqslant \rho = \uparrow_c$
ł		$\begin{array}{c} f(x) - f_{\mathcal{O}}^{*} \leq f(x) - g(y) \text{ for an arbitrary } y \in \Omega \text{ (suboptimality certificate). Moreover,} \\ p^{*} \in [g(y), f_{0}(x)], d^{*} \in [g(y), f_{0}(x)] \end{array} \qquad \qquad$
	•	Dual function is always concave $\beta^* < \beta < $
		As a pointwise minimum of affine functions. PUNL PROBLEM $f(X_{H}) - f_{0} = f_{0}(N_{CP}) - f_{0}(N_{CP}$
	Ex	camples beigo borrytol 10 g Teneps
	~.	

Nirror Dasay

Simple projection onto simplex with duality

To find the Euclidean projection of $x \in \mathbb{R}^n$ onto probability simplex $\mathcal{P} = \{z \in \mathbb{R}^n \mid z \succeq 0, \mathbf{1}^\top z = 1\}$, we solve the following problem:

$$egin{aligned} &rac{1}{2}\|y-x\|_2^2 o \min_{y\in \mathbb{R}^n\succeq 0} \ ext{s.t.} \ \mathbf{1}^ op y = 1 \end{aligned}$$

Hint: Consider the problem of minimizing $\frac{1}{2} \|y - x\|_2^2$ subject to subject to $y \succeq 0, \mathbf{1}^\top y = 1$. Form the partial Lagrangian

$$L(y,
u) = rac{1}{2} \|y-x\|_2^2 +
u(\mathbf{1}^ op y-1),$$

$$\begin{array}{c|c} Ax = b \\ \hline \\ Ae R^n \\ \hline \\ roman \\ roman \\ \hline \\ roman \\$$

$$A \in \mathbb{P}^{n\times n}$$

$$A^{\dagger} = \lim_{\substack{x \neq 0 \\ n\times m}} \left(A^{\dagger} A + \mathcal{A} + \mathcal{A} \right)^{t} A^{\dagger}$$

$$A^{\dagger} = \lim_{\substack{x \neq 0 \\ n\times m}} \left(A^{\dagger} A + \mathcal{A} + \mathcal{A} \right)^{t} A^{\dagger}$$

$$n\times m$$

$$neelegeospatimes$$

$$g(\mathcal{N}) = \inf_{\substack{x \neq 0 \\ x \neq 0}} L(x, \mathcal{D}) =$$

$$\sum_{\substack{x \neq 0 \\ x \neq 0}} dom g(\mathcal{N})$$

$$\nabla_{x} L = 0 = \sum \left[\chi^{\dagger} + \mathcal{N} (Ax^{\dagger} - \beta) \right]$$

$$= \frac{1}{2} ||\chi^{\dagger}||^{2} + \mathcal{N} (Ax^{\dagger} - \beta) =$$

$$= \frac{1}{2} ||\chi^{\dagger}||^{2} = 0$$

Then we have weak duality: $p^* \ge d^*$. Furthermore, if the functions f and g are convex and $A(\mathbf{relint}(E)) \cap \mathbf{relint}(G) \ne \emptyset$, then we have strong duality: $p^* = d^*$. While points $x^* \in E \cap A^{-1}(G)$ and $\lambda^* \in G_* \cap (-A^*)^{-1}(E_*)$ are optimal values for primal and dual problem if and only if:

$$egin{array}{ll} -A^*\lambda^*\in\partial f(x^*)\ \lambda^*\in\partial g(Ax^*) \end{array}$$

Convex case is especially important since if we have Fenchel - Rockafellar problem with parameters (f, g, A), than the dual problem has the form $(f^*, g^*, -A^*)$.

References

- <u>Convex Optimization Boyd & Vandenberghe @ Stanford</u>
- Course Notes for EE227C. Lecture 13
- <u>Course Notes for EE227C. Lecture 14</u>
- {% include link.html title='Optimality conditions. KKT' %}
- Seminar 7 @ CMC MSU
- Seminar 8 @ CMC MSU
- <u>Convex Optimization @ Berkley 10th lecture</u>