
Linear least squares

Problem

In a least-squares, or linear regression, problem, we have measurements and
and seek a vector such that is close to . Closeness is defined as the sum of the
squared differences:

also known as the -norm squared,

For example, we might have a dataset of users, each represented by features. Each row
of is the features for user , while the corresponding entry of is the measurement we want
to predict from , such as ad spending. The prediction is given by .

We find the optimal by solving the optimization problem

Let denote the optimal . The quantity is known as the residual. If , we
have a perfect fit.

af://n0
af://n4

Note, that the function needn't be linear in the argument but only in the parameters that are
to be determined in the best fit.

Approaches

Moore–Penrose inverse

If the matrix is relatively small, we can write down and calculate exact solution:

where is called pseudo-inverse matrix. However, this approach squares the condition number
of the problem, which could be an obstacle in case of ill-conditioned huge scale problem.

QR decomposition

For any matrix there is exists QR decomposition:

where is an orthogonal matrix (its columns are orthogonal unit vectors meaning
 and is an upper triangular matrix. It is important to notice, that since

, we have:

Now, process of finding theta consists of two steps:

1. Find the QR decomposition of .
2. Solve triangular system , which is triangular and, therefore, easy to solve.

Cholesky decomposition

For any positive definite matrix there is exists Cholesky decomposition:

af://n13
af://n14
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
af://n18
af://n29

where is an lower triangular matrix. We have:

Now, process of finding theta consists of two steps:

1. Find the Cholesky decomposition of .
2. Find the by solving triangular system
3. Find the by solving triangular system

Note, that in this case the error stil proportional to the squared condition number.

Code

Open in Colab

References

CVXPY documentation
Interactive example
Jupyter notebook by A. Katrutsa

Maximum likelihood estimation

Problem

We need to estimate probability density of a random variable from observed values.

af://n45
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Least_squares.ipynb
af://n47
https://www.cvxpy.org/examples/basic/least_squares.html
http://setosa.io/ev/ordinary-least-squares-regression/
https://nbviewer.jupyter.org/github/amkatrutsa/MIPT-Opt/blob/master/16-LSQ/Seminar16en.ipynb
af://n54
af://n57
af://n60

Approach

We will use idea of parametric distribution estimation, which involves choosing the best
parameters, of a chosen family of densities , indexed by a parameter . The idea is very
natural: we choose such parameters, which maximizes the probability (or, logarithm of
probability) of observed values.

Linear measurements with i.i.d. noise

Suppose, we are given the set of observations:

where

 - unknown vector of parameters
 are IID noise with density
 - measurements,

Which implies the following optimization problem:

Where the sum goes from the fact, that all observation are independent, which leads to the fact,

that . The target function is called log-likelihood function .

Gaussian noise

Which means, the maximum likelihood estimation in case of gaussian noise is a least squares
solution.

Laplacian noise

af://n60
af://n63
af://n77
af://n82

Which means, the maximum likelihood estimation in case of Laplacian noise is a -norm
solution.

Uniform noise

Which means, the maximum likelihood estimation in case of uniform noise is any vector , which
satisfies .

Binary logistic regression

Suppose, we are given a set of binary random variables . Let us parametrize the
distribution function as a sigmoid, using linear transformation of the input as an argument of a
sigmoid.

Picture from Wikipedia

Let's assume, that first observations are ones: , . Then, log-
likelihood function will be written as follows:

References

Convex Optimization @ UCLA by Prof. L. Vandenberghe
Numerical explanation

Total variation in-painting

Problem

af://n87
af://n92
af://n98
http://www.seas.ucla.edu/~vandenbe/ee236b/ee236b.html
https://cvxopt.org/examples/book/logreg.html
af://n103
af://n106

Grayscale image

A grayscale image is represented as an matrix of intensities (typically between the
values and). We are given all the values of corrupted picture, but some of them should be
preserved as is through the recovering procedure: , where

 is the set of indices corresponding to known pixel values. Our job
is to in-paint the image by guessing the missing pixel values, i.e., those with indices not in . The
reconstructed image will be represented by , where matches the known pixels, i.e.,

 for .

The reconstruction is found by minimizing the total variation of , subject to matching the
known pixel values. We will use the total variation, defined as

So, the final optimization problem will be written as follows:

The crucial thing about this problem is defining set of known pixels . There are some heuristics:
for example, we could state, that each pixel with color similar (or exactly equal) to the color of
text is unknown. The results for such approach are presented below:

af://n108

Color image

For the color case we consider in-painting problem in a slightly different setting: destroying some
random part of all pixels. In this case the image itself is 3d tensor (we convert all others color
chemes to the RGB). As it was in the grayscale case, we construct the mask of known pixels for
all color channels uniformly, based on the principle of similarity of particular 3d pixel to the
vector (black pixel). The results are quite promising - note, that we have no information
about the original picture, but assumption, that corrupted pixels are black. For the color picture
we just sum all tv's on the each channel:

Then, we need to write down optimization problem to be solved:

Results are presented below (these computations are really take time):

It is not that easy, right?

af://n116

Only 5% of all pixels are left:

What about 1% of all pixels?

Code

Open in Colab

References

CVXPY documentation
Interactive demo

Principal component analysis

Intuition

af://n127
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Total%20variation%20inpainting.ipynb
af://n129
https://www.cvxpy.org/examples/applications/tv_inpainting.html
https://remi.flamary.com/demos/proxtv.html
af://n134
af://n137

Imagine, that you have a dataset of points. Your goal is to choose orthogonal axes, that describe
your data the most informative way. To be precise, we choose first axis in such a way, that
maximize the variance (expressiveness) of the projected data. All the following axes have to be
orthogonal to the previously chosen ones, while satisfy largest possible variance of the
projections.

Let's take a look at the simple 2d data. We have a set of blue points on the plane. We can easily
see that the projections on the first axis (red dots) have maximum variance at the final position of
the animation. The second (and the last) axis should be orthogonal to the previous one.

source

This idea could be used in a variety ways. For example, it might happen, that projection of
complex data on the principal plane (only 2 components) bring you enough intuition for
clustering. The picture below plots projection of the labeled dataset onto the first to principal
components (PC's), we can clearly see, that only two vectors (these PC's) would be enogh to differ
Finnish people from Italian in particular dataset (celiac disease (Dubois et al. 2010))

source

Problem

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://privefl.github.io/bigsnpr/articles/how-to-PCA.html
af://n141

The first component should be defined in order to maximize variance. Suppose, we've already
normalized the data, i.e. , then sample variance will become the sum of all squared

projections of data points to our vector , which implies the following optimization problem:

or

since we are looking for the unit vector, we can reformulate the problem:

It is known, that for positive semidefinite matrix such vector is nothing else, but eigenvector
of , which corresponds to the largest eigenvalue. The following components will give you the
same results (eigenvectors).

So, we can conclude, that the following mapping:

describes the projection of data onto the principal components, where contains first (by the
size of eigenvalues) eigenvectors of .

Now we'll briefly derive how SVD decomposition could lead us to the PCA.

Firstly, we write down SVD decomposition of our matrix:

and to its transpose:

Then, consider matrix :

Which corresponds to the eigendecomposition of matrix , where stands for the matrix of
eigenvectors of , while contains eigenvalues of .

At the end:

The latter formula provide us with easy way to compute PCA via SVD with any number of
principal components:

https://en.wikipedia.org/wiki/Rayleigh_quotient

Examples

🌼 Iris dataset

Consider the classical Iris dataset

source We have the dataset matrix

af://n164
af://n165
https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html

Code

Open in Colab

Related materials

Wikipedia
Blog post
Blog post

Minimum volume ellipsoid

af://n168
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PCA.ipynb
af://n170
https://en.wikipedia.org/wiki/Principal_component_analysis
https://ethen8181.github.io/machine-learning/dim_reduct/svd.html
https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html
af://n178
af://n180

Problem

Let be the points in . Given these points we need to find an ellipsoid, that contains
all points with the minimum volume (in 2d case volume of an ellipsoin is just the square).

An invertible linear transformation applied to a unit sphere produces an ellipsoid with the
square, that is times bigger, than the unit sphere square, that's why we parametrize the
interior of ellipsoid in the following way:

Sadly, the determinant is the function, which is relatively hard to minimize explicitly. However, the
function is actually convex, which provides a great opportunity to work
with it. As soon as we need to cover all the points with ellipsoid of minimum volume, we pose an
optimization problem on the convex function with convex restrictions:

Code

Open in Colab

References

af://n180
af://n189
http://%20https//colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Ellipsoid.ipynb
af://n191

Jupyter notebook by A. Katrutsa
https://cvxopt.org/examples/book/ellipsoids.html

Rendezvous problem

Problem

We have two bodies in discrete time: the first is described by its coordinate and its speed ,
the second has coordinate and speed . Each body has its own dynamics, which we denote as
linear systems with matrices :

We want these bodies to meet in future at some point in such a way, that preserve minimum
energy through the path. We will consider only kinetic energy, which is proportional to the
squared speed at each point of time, that's why optimization problem takes the following form:

Problem of this type arise in space engeneering - just imagine, that the first body is the
spaceship, while the second, say, Mars.

Code

Open in Colab

References

https://colab.research.google.com/github/amkatrutsa/MIPT-Opt/blob/master/01-Intro/demos.ipynb#scrollTo=W264L1t1p3mF
http://cvxopt%20documentation/
af://n196
af://n199
af://n206
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Rendezvous.ipynb
af://n208

Jupyter notebook by A. Katrutsa

Travelling salesman problem

Problem

Suppose, we have points in Euclidian space (for simplicity we'll consider and plot case with
). Let's imagine, that these points are nothing else but houses in some 2d village. Salesman

should find the shortest way to go through the all houses only once.

That is, very simple formulation, however, implies - hard problem with the factorial growth of
possible combinations. The goal is to minimize the following cumulative distance:

where is the -th point from and stands for the - dimensional vector of indicies, which
describes the order of path. Actually, the problem could be formulated as an LP problem, which
is easier to solve.

🧬Genetic (evolution) algorithm

Our approach is based on the famous global optimization algorithm, known as evolution
algorithm.

Population and individuals

Firstly we need to generate the set of random solutions as an initialization. We will call a set of
solutions as population, while each solution is called individual (or creature).

Each creature contains integer numbers , which indicates the order of bypassing all the
houses. The creature, that reflects the shortest path length among the others will be used as an
output of an algorithm at the current iteration (generation).

https://colab.research.google.com/github/amkatrutsa/MIPT-Opt/blob/master/01-Intro/demos.ipynb#scrollTo=W264L1t1p3mF
af://n211
af://n214
https://en.wikipedia.org/wiki/Travelling_salesman_problem#Integer_linear_programming_formulations
af://n220
af://n222

Crossing procedure

Each iteration of the algorithm starts with the crossing (breed) procedure. Formally speaking, we
should formulate the mapping, that takes two creature vectors as an input and returns its
offspring, which inherits parents properties, while remaining consistent. We will use ordered
crossover as such procedure.

8 4 7 3 6 2 5 1 9 0

0 1 2 3 4 5 6 7 8 9

0 4 7 3 6 2 5 1 8 9

Parent 1

Parent 2

Child
Mutation

In order to give our algorithm some ability to escape local minima we provide it with mutation
procedure. We simply swap some houses in an individual vector. To be more accurate, we define
mutation rate (say,). On the one hand, the higher the rate, the less stable the population is,
on the other, the smaller the rate, the more often algorithm gets stuck in the local minima. We
choose individuals and in each case swap random digits.

Selection

af://n225
http://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators/Order1CrossoverOperator.aspx
af://n228
af://n230

At the end of the iteration we have increased populatuion (due to crossing results), than we just
calculate total path distance to each individual and select top of them.

In general, for any , where is the number of dimensions in the Euclidean space, there is a
polynomial-time algorithm that finds a tour of length at most times the optimal for

geometric instances of TSP in

Code

Open in Colab

References

General information about genetic algorithms
Wiki

af://n234
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Travelling%20salesman%20problem.ipynb
af://n236
http://www.rubicite.com/Tutorials/GeneticAlgorithms.aspx
https://en.wikipedia.org/wiki/Travelling_salesman_problem
af://n241

Deep learning

Problem

af://n241
af://n244

A lot of practical task nowadays are being solved by the deep learning approach, which is usually
implies finding local minimum of a non - convex function, that generalizes well (enough 😉). The
goal of this short text is to provide you an importance of the optimization behind neural network
training.

Cross entropy

One of the most commonly used loss functions in classification tasks is the normalized
categorical cross entropy in class problem:

Since in Deep Learning tasks the number of points in a dataset could be really huge, we usually
use {%include link.html title='Stochastic gradient descent based approaches as a workhorse.

In such algorithms one uses the estimation of a gradient at each step instead of the full gradient
vector, for example, in cross entropy we have:

The simplest approximation is statistically judged unbiased estimation of a gradient:

where we initially sample randomly only points and calculate sample average. It can be
also considered as a noisy version of the full gradient approach.

Code

Open in Colab

References

af://n247
af://n258
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Deep%20learning.ipynb
af://n260

Optimization for Deep Learning Highlights in 2017
An overview of gradient descent optimization algorithms

http://ruder.io/deep-learning-optimization-2017/
http://ruder.io/optimizing-gradient-descent/

	Linear least squares
	Problem
	Approaches
	Moore–Penrose inverse
	QR decomposition
	Cholesky decomposition

	Code
	References

	Maximum likelihood estimation
	Problem
	Approach
	Linear measurements with i.i.d. noise
	Gaussian noise
	Laplacian noise
	Uniform noise

	Binary logistic regression

	References

	Total variation in-painting
	Problem
	Grayscale image
	Color image

	Code
	References

	Principal component analysis
	Intuition
	Problem
	Examples
	🌼 Iris dataset

	Code
	Related materials

	Minimum volume ellipsoid
	Problem
	Code
	References

	Rendezvous problem
	Problem
	Code
	References

	Travelling salesman problem
	Problem
	🧬Genetic (evolution) algorithm
	Population and individuals
	Crossing procedure
	Mutation
	Selection

	Code
	References

	Deep learning
	Problem
	Cross entropy

	Code
	References

