
Methods
General formulation

Some necessary or/and sufficient conditions are known (See Optimality conditions. KKT and Convex
optimization problem' %})

In fact, there might be very challenging to recognize the convenient form of optimization problem.
Analytical solution of KKT could be inviable.

Iterative methods

Typically, the methods generate an infinite sequence of approximate solutions

which for a finite number of steps (or better - time) converges to an optimal (at least one of the optimal)
solution .

x0

x1
x2

x3x4

def GeneralScheme(x, epsilon):
 while not StopCriterion(x, epsilon):
 OracleResponse = RequestOracle(x)
 x = NextPoint(x, OracleResponse)
 return x

Oracle conception

f(xk), f’(x k), f’’(xk)

ORACLE

Black - box

xk

Complexity

Challenges

Unsolvability

In general, optimization problems are unsolvable. ¯\(ツ)/¯

Consider the following simple optimization problem of a function over unit cube:

We assume, that the objective function is Lipschitz continuous on
:

with some constant (Lipschitz constant). Here - the -dimensional unit cube

Our goal is to find such for some positive . Here is the global minima of the
problem. Uniform grid with points on each dimension guarantees at least this quality:

which means, that

Our goal is to find the for some . So, we need to sample points, since we need to measure
function in points. Doesn't look scary, but if we'll take , computations on the
modern personal computers will take 31,250,000 years.

Stopping rules

Argument closeness:

Function value closeness:

Closeness to a critical point

But and are unknown!

Sometimes, we can use the trick:

Note: it's better to use relative changing of these values, i.e. .

Local nature of the methods

Rates of convergence
Speed of convergence

In order to compare perfomance of algorithms we need to define a terminology for different types of
convergence.
Let be a sequence in that converges to some point

Linear convergence

We can define the linear convergence in a two different forms:

for all sufficiently large . Here and . This means that the distance to the solution
decreases at each iteration by at least a constant factor bounded away from . Note, that sometimes this
type of convergence is also called exponential or geometric.

Superlinear convergence

The convergence is said to be superlinear if:

where or , . Note, that superlinear convergence is also linear convergence
(one can even say, that it is linear convergence with).

Sublinear convergence

where and . Note, that sublinear convergence means, that the sequence is converging
slower, than any geometric progression.

Quadratic convergence

where and .

Quasi-Newton methods for unconstrained optimization typically converge superlinearly, whereas Newton’s
method converges quadratically under appropriate assumptions. In contrast, steepest descent algorithms
converge only at a linear rate, and when the problem is ill-conditioned the convergence constant is close
to .

How to determine convergence type

Root test

Let be a sequence of non-negative numbers,
converging to zero, and let

If , then has linear convergence with constant .
In particular, if , then has superlinear convergence.
If , then has sublinear convergence.
The case is impossible.

Ratio test

Let be a sequence of strictly positive numbers converging to zero. Let

If there exists and , then has linear convergence with constant .
In particular, if , then has superlinear convergence.

If does not exist, but , then has linear convergence with a

constant not exceeding .

If , then has sublinear convergence.

The case is impossible.

In all other cases (i.e., when) we cannot claim anything

concrete about the convergence rate .

References
Code for convergence plots - Open in Colab
CMC seminars (ru)
Numerical Optimization by J.Nocedal and S.J.Wright

Line search
Problem
Suppose, we have a problem of minimization of a function of scalar variable:

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Convergence.ipynb
http://www.machinelearning.ru/wiki/images/9/9a/MOMO18_Extra1.pdf

Sometimes, we refer to the similar problem of finding minimum on the line segment :

Line search is one of the simplest formal optimization problems, however, it is an important link in solving
more complex tasks, so it is very important to solve it effectively. Let's restrict the class of problems under
consideration where is a unimodal function.

Function is called unimodal on , if there is , that
 and

Key property of unimodal functions
Let be unimodal function on . Than if , then:

if
if

Code

Code
Open in Colab

References
CMC seminars (ru)

Binary search
Idea
We divide a segment into two equal parts and choose the one that contains the solution of the problem
using the values of functions.

Algorithm

def binary_search(f, a, b, epsilon):
 c = (a + b) / 2
 while abs(b - a) > epsilon:
 y = (a + c) / 2.0
 if f(y) <= f(c):
 b = c
 c = y
 else:
 z = (b + c) / 2.0
 if f(c) <= f(z):
 a = y
 b = z
 else:
 a = c
 c = z
 return c

https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Line_search.ipynb
http://www.machinelearning.ru/wiki/images/4/4d/MOMO16_min1d.pdf

Bounds
The length of the line segment on -th iteration:

For unimodal functions, this holds if we select the middle of a segment as an output of the iteration :

Note, that at each iteration we ask oracle no more, than 2 times, so the number of function evaluations is
, which implies:

By marking the right side of the last inequality for , we get the number of method iterations needed to
achieve accuracy:

Golden search
Idea
The idea is quite similar to the dichotomy method. There are two golden points on the line segment (left
and right) and the insightful idea is, that on the next iteration one of the points will remain the golden point.

lk rk

lk+1 rk+1 lk+1 rk+1

k iteration

k+1 iteration

Algorithm

Bounds

where .

The geometric progression constant more than the dichotomy method - worse than
The number of function calls is less than for the dichotomy method - worse than - (for
each iteration of the dichotomy method, except for the first one, the function is calculated no more
than 2 times, and for the gold method - no more than one)

Successive parabolic interpolation
Idea

def golden_search(f, a, b, epsilon):
 tau = (sqrt(5) + 1) / 2
 y = a + (b - a) / tau**2
 z = a + (b - a) / tau
 while b - a > epsilon:
 if f(y) <= f(z):
 b = z
 z = y
 y = a + (b - a) / tau**2
 else:
 a = y
 y = z
 z = a + (b - a) / tau
 return (a + b) / 2

Sampling 3 points of a function determines unique parabola. Using this information we will go directly to its
minimum. Suppose, we have 3 points such that line segment contains minimum of
a function . Then, we need to solve the following system of equations:

Note, that this system is linear, since we need to solve it on . Minimum of this parabola will be
calculated as:

Note, that if , than will lie in

Algorithm

Bounds
The convergence of this method is superlinear, but local, which means, that you can take profit from using
this method only near some neighbour of optimum.

Inexact line search
This strategy of inexact line search works well in practice, as well as it has the following geometric
interpretation:

Sufficient decrease

def parabola_search(f, x1, x2, x3, epsilon):
 f1, f2, f3 = f(x1), f(x2), f(x3)
 while x3 - x1 > epsilon:
 u = x2 - ((x2 - x1)**2*(f2 - f3) - (x2 - x3)**2*(f2 - f1))/(2*((x2 - x1)*(f2 -
f3) - (x2 - x3)*(f2 - f1)))
 fu = f(u)

 if x2 <= u:
 if f2 <= fu:
 x1, x2, x3 = x1, x2, u
 f1, f2, f3 = f1, f2, fu
 else:
 x1, x2, x3 = x2, u, x3
 f1, f2, f3 = f2, fu, f3
 else:
 if fu <= f2:
 x1, x2, x3 = x1, u, x2
 f1, f2, f3 = f1, fu, f2
 else:
 x1, x2, x3 = u, x2, x3
 f1, f2, f3 = fu, f2, f3
 return (x1 + x3) / 2

Sufficient decrease
Let's consider the following scalar function while being at a specific point of :

consider first order approximation of :

A popular inexact line search condition stipulates that should first of all give sufficient decrease in the
objective function , as measured by the following inequality:

for some constant . (Note, that stands for the first order Taylor approximation of).
This is also called Armijo condition. The problem of this condition is, that it could accept arbitrary small
values , which may slow down solution of the problem. In practice, is chosen to be quite small, say

.

Curvature condition
To rule out unacceptably short steps one can introduce a second requirement:

for some constant , where is a constant from Armijo condition. Note that the left-handside is
simply the derivative , so the curvature condition ensures that the slope of at the target point
is greater than times the initial slope . Typical values of for Newton or quasi-
Newton method. The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions.

Goldstein conditions
Let's consider also 2 linear scalar functions :

and

Note, that Goldstein-Armijo conditions determine the location of the function between and
. Typically, we choose and , while .

f(xk)

!1(η) η*

!2(η)

η

! η
! η

0

References
Numerical Optimization by J.Nocedal and S.J.Wright.

Example 1

Show with the definition that the sequence does not have a linear convergence rate (but it

converges to zero).

Example 2

Determine the convergence or divergence of a given sequence .

Example 3

Show with the definition that the sequence does not have a quadratic convergence rate (but it

converges to zero).

Example 4

Determine the convergence or divergence of a given sequence .

Example 5

Determine the convergence or divergence of a given sequence .

Example 6

Show that the sequence is quadratically converged to .

Example 7

Determine the convergence or divergence of a given sequence .

Example 8

Determine the convergence or divergence of a given sequence .

Example 9

Let be a sequence of non-negative numbers and let be some integer. Prove that sequence
 is linearly convergent with constant if and only if a the sequence converged linearly

with constant .

Example 10

Consider the function .

 Consider the following modification of solution localization method, in which the interval is divided
into parts in a fixed proportion of (maximum twice at iteration - as in the
dichotomy method). Experiment with different values of and plot the dependence of - the
number of iterations needed to achieve - accuracy from the parameter. Consider . Note that
with this method is exactly the same as the dichotomy method.

Example 11

Show that if , there may be no step lengths that satisfy the Wolfe conditions (sufficient
decrease and curvature condition).

Example 12

Show that the one-dimensional minimizer of a strongly convex quadratic function
always satisfies the Goldstein conditions

	Methods
	General formulation
	Iterative methods
	Oracle conception
	Complexity

	Challenges
	Unsolvability
	Stopping rules
	Local nature of the methods

	Rates of convergence
	Speed of convergence
	Linear convergence
	Superlinear convergence
	Sublinear convergence
	Quadratic convergence

	How to determine convergence type
	Root test
	Ratio test

	References

	Line search
	Problem
	Key property of unimodal functions
	Code
	References

	Binary search
	Idea
	Algorithm
	Bounds

	Golden search
	Idea
	Algorithm
	Bounds

	Successive parabolic interpolation
	Idea
	Algorithm
	Bounds

	Inexact line search
	Sufficient decrease
	Curvature condition
	Goldstein conditions
	References
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12

