Gradient descent

Summary
A classical problem of function minimization is considered.
Tpi1 = xp — MV f(Tr) (GD)

e The bottleneck (for almost all gradient methods) is choosing step-size, which can lead to the dramatic
difference in method's behavior.

e One of the theoretical suggestions: choosing stepsize inversly proportional to the gradient Lipschitz

1

constant Ny = T

e In huge-scale applications the cost of iteration is usually defined by the cost of gradient calculation (at
least O(p)).

e |f function has Lipschitz-continious gradient, then method could be rewritten as follows:

1

Tpi1 = Tp — fo (zr) =

—argmin { () + (V£ (o).~ 20) + 5 |~ ol

Intuition

Direction of local steepest descent

Let's consider a linear approximation of the differentiable function f along some direction h, ||hl|s = 1:
f(m +nh) = f(z) + n(f'(z), h) + o(n)
We want h to be a decreasing direction:
f(z +nh) < f(z)
f(x) +n{f'(z), h) + o(n) < f(=)
and going to the limitatn — 0:
(f'(=),h) <0
Also from Cauchy-Bunyakovsky-Schwarz inequality:
[(F'@), < f' @)2llrle = (F(@) k) = =[lf'@)ll20hllz = = (@)]2
Thus, the direction of the antigradient

@
" @

gives the direction of the steepest local decreasing of the function f.

The result of this method is



Tp1 =z — nf' (zr)

Gradient flow ODE

Let's consider the following ODE, which is referred as Gradient Flow equation.
dx ,
— = —f(x(t
== —f ()

and discretize it on a uniform grid with 7 step:

Th+1 — Tk _ _fl(xk)
n )

where zj, = x(t;) and n = tg.1 — tg - is the grid step.
From here we get the expression for x4
zrr1 =z — nf'(zp),

which is exactly gradient descent.

Necessary local minimum condition

f'(z)=0

—nf'(xz) =0
z—nf'(z) =2

zr — nf' (zr) = Tr

This is, surely, not a proof at all, but some kind of intuitive explanation.

Minimizer of Lipschitz parabola

Some general highlights about Lipschitz properties are needed for explanation. If a function f : R — R is
continuously differentiable and its gradient satisfies Lipschitz conditions with constant L, then Vz, y € R":

76) ~ F(@) ~ (V$@)y— )] < 3 ly ol

which geometrically means, that if we'll fix some point g € R"™ and define two parabolas:

$1(2) = f(a0) + (VS(z0), — z0) — o — o],

ba(w) = F(@o) + (Vf(xo), 2 — o) + o [z — o
Then

$1(z) < f(x) < ¢a(z) Va e R™

Now, if we have global upper bound on the function, in a form of parabola, we can try to go directly to its

minimum.



v¢2($) =0
Vf(zo) + L(z* —z9) =0

. 1
¥ = — fo(wo)

1
Thy1 = Tp — fvf(%)

f(x)

Xi  Xicr1 X

This way leads to the % stepsize choosing. However, often the L constant is not known.

But if the function is twice continuously differentiable and its gradient has Lipschitz constant L, we can
derive a way to estimate this constant V& € R":

IVZf@)l <L
or

—~LI, X V*f(x) < LI,

Stepsize choosing strategies

Stepsize choosing strategy 7y, significantly affects convergence. General {%include link.html title='Line
search algorithms might help in choosing scalar parameter.

Constant stepsize
For f € C}J’l:
M =1

flen) = flow) 2 (1= 5Ln) 1970



With choosing n = % we have:
1

11V F()|?

fxp) = f(@rin) =

Fixed sequence

1
vk+1

The latter 2 strategies are the simplest in terms of implementation and analytical analysis. It is clear that this
approach does not often work very well in practice (the function geometry is not known in advance).

Mk =

Exact line search aka steepest descent
N = arg ,%%Ii f(zrs1) = arg ,%%Ii flzr —nVf(zr))

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line
search can be difficult if the function calculation takes too long or costs a lot.

Interesting theoretical property of this method is that each following iteration is orthogonal to the previous
one:

N, = arg min f(zy — nV f(zx))
neR+

Optimality conditions:
V (ki) V() =0

Goldstein-Armijo
Convergence analysis

Convex case

Lipischitz continuity of the gradient
Assume that f : R™ — Ris convex and differentiable, and additionally
IVf(z) — Vi)l < Lljz — y|| Vz,y € R"
i.e., V f is Lipschitz continuous with constant L > 0.
Since V f Lipschitz with constant L, which means V2 f < LI, we have Vz, y, z:
(z—y) (V2f(2) = LI)(z —y) <0
(z—y) 'V f(2)(z —y) < Lz -yl

Now we'll consider second order Taylor approximation of f(y) and Taylor's Remainder Theorem (we assum,
that the function f is continuously differentiable), we have Vz,y, 3z € [z, y] :



f9) = (@) + V(@) (s - 2) + 5 (@~ ) Vf() @~ )
< f@)+ V(@) (- =) + 2o )’
For the gradient descent we have & = Tp, Y = Ti1, Trs1 = T — NeV F(zk):
Flein) < Flaw) + V£ (-n () + 2 0V fa)?

< fe - (1- 52 )alv sl

Optimal constant stepsize

1
Now, if we'll consider constant stepsize strategy and will maximize (1 — T) n — max, we'll getn = A
n

flenr) < @) = 5 |V £

Convexity
f(ox) < f(@*) + Vi) (@~ 2°)
That's why we have:
flonn) < f&") + Ven) (o1~ 2°) — 52 Vo)
= (") + 5 (o= = law o — TV F@0I)

* L * *
= f@) + 5 (lox = 2"” = loxa —2"[I%)

Thus, summing over all iterations, we have:

2

IN

> (f(@i) = £(z7) < g(H%o —z"||* = [lz, — 2*]1*)
L
2

where R = ||z¢g — «*||. And due to convexity:

k 2
flan) = 1) < 1 D (Fle) — ) £ - = 5

Strongly convex case
If the function is strongly convex:

fly) > f(@) + Vi) (y—z) + gny — z|? Va,y € R



lzrer = 2]* < (1 — ) ex — 2"

Bounds

Conditions I f(zx) — f(z*)| < Type of convergence lzr —z*| <
Convex 1\ GR )

) i ) ] o= ) — Sublinear
Lipschitz-continuous function(G) k k
C 1\ LR?

-onve?< ) ) o <—> Sublinear
Lipschitz-continuous gradient (L) k k
p-Strongly convex Linear 1 kg2
Lipschitz-continuous gradient(L) (1- n,u)
u-Strongly convex Locally linear RR 1 2
Lipschitz-continuous hessian(M) R<R R—R L+3u

e R= SV
Materials

e The zen of gradient descent. Moritz Hardt

® Greatvisualization
® (Cheatsheet on the different convergence theorems proofs

Inexact line search

This strategy of inexact line search works well in practice, as well as it has the following geometric
interpretation:

Sufficient decrease
Let's consider the following scalar function while being at a specific point of x;
¢(a) = f(zr — aVf(zk),a >0
consider first order approximation of @(c):
¢(a) = f(xr) — aV f(zr) ' Vf(zr)

A popular inexact line search condition stipulates that a should first of all give sufficient decrease in the
objective function f, as measured by the following inequality:

flzr — aVf(zy)) < flzx) —c1 - aVf(zr) YV f(2)

for some constant ¢; € (0,1). (Note, that ¢; = 1 stands for the first order Taylor approximation of ¢(c)).
This is also called Armijo condition. The problem of this condition is, that it could accept arbitrary small
values a, which may slow down solution of the problem. In practice, ¢ is chosen to be quite small, say

—4
CcC1 =~ 107,


http://blog.mrtz.org/2013/09/07/the-zen-of-gradient-descent.html
http://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html
https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

Curvature condition
To rule out unacceptably short steps one can introduce a second requirement:
~Vf(zr — aVf(zr) ' V(zr) 2 2V (i) (~Vf(zr))

for some constant ¢y € (cl, 1), where ¢ is a constant from Armijo condition. Note that the left-handside is
simply the derivative V ,¢(a), so the curvature condition ensures that the slope of ¢ () at the target point
is greater than ¢y times the initial slope V ,¢()(0). Typical values of c2 =~ 0.9 for Newton or quasi-
Newton method. The sufficient decrease and curvature conditions are known collectively as the Wolfe
conditions.

Goldstein conditions
Let's consider also 2 linear scalar functions ¢1 (), ¢2():
¢1(a) = f(zx) — aal|Vf(zi)]?

and
pa(a) = f(zx) — Bal|V f(z)|?

Note, that Goldstein-Armijo conditions determine the location of the function ¢(a) between ¢ (a) and
@2 (). Typically, we choose o« = pand 8 = 1 — p, while p € (0.5, 1).

$(n).
f(x,)
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