
Matrix calculus
Useful definitions and notations
We will treat all vectors as column vectors by default.

Matrix and vector multiplication

Let be , and be , and let the product be:

then is a matrix, with element given by:

Let be , and be , then the typical element of the product:

is given by:

Finally, just to remind:

Gradient

Gradient Let , then vector, which contains all first order partial derivatives:

Hessian

Let , then matrix, containing all the second order partial derivatives:

af://n0
af://n3
af://n5
af://n26
af://n29

X Y G Name

 (derivative)

 (gradient)

 (jacobian)

But actually, Hessian could be a tensor in such a way: is just 3d tensor, every
slice is just hessian of corresponding scalar function

Jacobian

The extension of the gradient of multidimensional :

Summary

named gradient of . This vector indicates the direction of steepest ascent. Thus, vector
 means the direction of the steepest descent of the function in the point. Moreover, the

gradient vector is always orthogonal to the contour line in the point.

General concept

Naive approach

af://n33
af://n36
af://n66
af://n67

The basic idea of naive approach is to reduce matrix\vector derivatives to the well-known scalar
derivatives.

Matrix notation of a function

Scalar notation of a function

Matrix notation of a gradient

Simple derivative

One of the most important practical trick here is to separate indices of sum () and partial
derivatives (). Ignoring this simple rule tends to produce mistakes.

Guru approach

The guru approach implies formulating a set of simple rules, which allows you to calculate
derivatives just like in a scalar case. It might be convenient to use the differential notation here.

Differentials

After obtaining the differential notation of we can retrieve the gradient using following
formula:

Then, if we have differential of the above form and we need to calculate the second derivative of
the matrix\vector function, we treat "old" as the constant , then calculate

Properties

Let and be the constant matrices, while and are the variables (or matrix functions).

af://n69
af://n71
af://n76

References
Good introduction
The Matrix Cookbook
MSU seminars (Rus.)
Online tool for analytic expression of a derivative.
Determinant derivative

Example 1

Find , if .

Example 2

Find , if .

af://n106
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://www.machinelearning.ru/wiki/images/a/ab/MOMO18_Seminar1.pdf
http://www.matrixcalculus.org/
https://charlesfrye.github.io/math/2019/01/25/frechet-determinant.html
af://n119
af://n122

Example 3

Find the gradient and hessian , if .

Example 4

Calculate:

Example 5

af://n125
af://n128
af://n131

Find , if

Automatic differentiation
Idea

Automatic differentiation is a scheme, that allow you to compute a value of gradient of function
with a cost of computing function itself only twice.

Chain rule

We will illustrate some important matrix calculus facts for specific cases

Univariate chain rule

Suppose, we have the following functions and . Then

af://n133
af://n135
af://n137
af://n139

Multivariate chain rule

The simplest example:

Now, we'll consider :

But what if we will add another dimension , than the -th output of will be:

where matrix is the jacobian of the . Hence, we could write it in a vector way:

Backpropagation

The whole idea came from the applying chain rule to the computation graph of primitive
operations

af://n142
af://n152

All frameworks for automatic differentiation construct (implicitly or explicitly) computation graph.
In deep learning we typically want to compute the derivatives of the loss function w.r.t. each
intermediate parameters in order to tune them via gradient descent. For this purpose it is
convenient to use the following notation:

Let be a topological ordering of the computation graph (i.e. parents come before
children). denotes the variable we’re trying to compute derivatives of (e.g. loss).

Forward pass:

For :

Compute as a function of its parents.

Backward pass:

For :

Compute derivatives

Note, that term is coming from the children of , while is already precomputed

effectively.

Jacobian vector product

The reason why it works so fast in practice is that the Jacobian of the operations are already
developed in effective manner in automatic differentiation frameworks. Typically, we even do not
construct or store the full Jacobian, doing matvec directly instead.

Example: element-wise exponent

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply, lambda g, ans, x, y : unbroadcast(x, y * g),

 lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract, lambda g, ans, x, y : unbroadcast(x, g),

 lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide, lambda g, ans, x, y : unbroadcast(x, g / y),

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x, g / y),

 lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

af://n160
af://n167
af://n177
af://n179

Hessian vector product

Interesting, that the similar idea could be used to compute Hessian-vector products, which is
essential for second order optimization or conjugate gradient methods. For a scalar-valued
function with continuous second derivatives (so that the Hessian matrix is
symmetric), the Hessian at a point is written as . A Hessian-vector product function
is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if is large, perhaps in the millions or billions
in the context of neural networks, then that might be impossible to store. Luckily, grad (in the
jax/autograd/pytorch/tensorflow) already gives us a way to write an efficient Hessian-vector
product function. We just have to use the identity

where is a new scalar-valued function that dots the gradient of at with the
vector . Notice that we're only ever differentiating scalar-valued functions of vector-valued
arguments, which is exactly where we know grad is efficient.

Code
Open in Colab

Materials
Autodidact - a pedagogical implementation of Autograd
CSC321 Lecture 6
CSC321 Lecture 10
Why you should understand backpropagation :)
JAX autodiff cookbook

import jax.numpy as jnp

def hvp(f, x, v):

 return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

af://n183
af://n192
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd.ipynb
af://n194
https://github.com/mattjj/autodidact
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

	Matrix calculus
	Useful definitions and notations
	Matrix and vector multiplication
	Gradient
	Hessian
	Jacobian
	Summary

	General concept
	Naive approach
	Guru approach
	Differentials
	Properties

	References
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Automatic differentiation
	Idea
	Chain rule
	Univariate chain rule
	Multivariate chain rule

	Backpropagation
	Forward pass:
	Backward pass:

	Jacobian vector product
	Example: element-wise exponent

	Hessian vector product

	Code
	Materials

