
Matrix calculus  
Useful definitions and notations  
We will treat all vectors as column vectors by default.

Matrix and vector multiplication  

Let  be , and  be , and let the product  be:

then  is a  matrix, with element  given by:

Let  be , and  be , then the typical element of the product:

is given by:

Finally, just to remind:

Gradient  

Gradient Let , then vector, which contains all first order partial derivatives:

Hessian  

Let , then matrix, containing all the second order partial derivatives:
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X Y G Name

 (derivative)

 (gradient)

 (jacobian)

But actually, Hessian could be a tensor in such a way:  is just 3d tensor, every
slice is just hessian of corresponding scalar function 

Jacobian  

The extension of the gradient of multidimensional  :

Summary  

named gradient of  . This vector indicates the direction of steepest ascent. Thus, vector
 means the direction of the steepest descent of the function in the point. Moreover, the

gradient vector is always orthogonal to the contour line in the point.

General concept  

Naive approach  
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The basic idea of naive approach is to reduce matrix\vector derivatives to the well-known scalar
derivatives. 

Matrix notation of a function

Scalar notation of a function

Matrix notation of a gradient

Simple derivative

One of the most important practical trick here is to separate indices of sum ( ) and partial
derivatives ( ). Ignoring this simple rule tends to produce mistakes.

Guru approach  

The guru approach implies formulating a set of simple rules, which allows you to calculate
derivatives just like in a scalar case. It might be convenient to use the differential notation here.

Differentials  

After obtaining the differential notation of  we can retrieve the gradient using following
formula:

Then, if we have differential of the above form and we need to calculate the second derivative of
the matrix\vector function, we treat "old"  as the constant , then calculate 

Properties  

Let  and  be the constant matrices, while  and  are the variables (or matrix functions).
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References  
Good introduction
The Matrix Cookbook
MSU seminars (Rus.)
Online tool for analytic expression of a derivative.
Determinant derivative

Example 1  

Find , if . 

Example 2  

Find , if . 
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https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://www.machinelearning.ru/wiki/images/a/ab/MOMO18_Seminar1.pdf
http://www.matrixcalculus.org/
https://charlesfrye.github.io/math/2019/01/25/frechet-determinant.html
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Example 3  

Find the gradient  and hessian , if . 

Example 4  

Calculate:  

Example 5  
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Find , if  

Automatic differentiation  
Idea  

Automatic differentiation is a scheme, that allow you to compute a value of gradient of function
with a cost of computing function itself only twice.

Chain rule  

We will illustrate some important matrix calculus facts for specific cases

Univariate chain rule  

Suppose, we have the following functions  and . Then
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Multivariate chain rule  

The simplest example:

Now, we'll consider :

But what if we will add another dimension , than the -th output of  will be:

where matrix  is the jacobian of the . Hence, we could write it in a vector way:

Backpropagation  

The whole idea came from the applying chain rule to the computation graph of primitive
operations

af://n142
af://n152


All frameworks for automatic differentiation construct (implicitly or explicitly) computation graph.
In deep learning we typically want to compute the derivatives of the loss function  w.r.t. each
intermediate parameters in order to tune them via gradient descent. For this purpose it is
convenient to use the following notation:

Let  be a topological ordering of the computation graph (i.e. parents come before
children).  denotes the variable we’re trying to compute derivatives of (e.g. loss).

Forward pass:  

For :

Compute  as a function of its parents.

Backward pass:  

For :

Compute derivatives 

Note, that  term is coming from the children of , while  is already precomputed

effectively.

Jacobian vector product  

The reason why it works so fast in practice is that the Jacobian of the operations are already
developed in effective manner in automatic differentiation frameworks. Typically, we even do not
construct or store the full Jacobian, doing matvec directly instead.

Example: element-wise exponent  

See the examples of Vector-Jacobian Products from autodidact library:

defvjp(anp.add,         lambda g, ans, x, y : unbroadcast(x, g),

                        lambda g, ans, x, y : unbroadcast(y, g))

defvjp(anp.multiply,    lambda g, ans, x, y : unbroadcast(x, y * g),

                        lambda g, ans, x, y : unbroadcast(y, x * g))

defvjp(anp.subtract,    lambda g, ans, x, y : unbroadcast(x, g),

                        lambda g, ans, x, y : unbroadcast(y, -g))

defvjp(anp.divide,      lambda g, ans, x, y : unbroadcast(x,   g / y),

                        lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))

defvjp(anp.true_divide, lambda g, ans, x, y : unbroadcast(x,   g / y),

                        lambda g, ans, x, y : unbroadcast(y, - g * x / y**2))
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Hessian vector product  

Interesting, that the similar idea could be used to compute Hessian-vector products, which is
essential for second order optimization or conjugate gradient methods. For a scalar-valued
function  with continuous second derivatives (so that the Hessian matrix is
symmetric), the Hessian at a point  is written as . A Hessian-vector product function
is then able to evaluate

for any vector .

The trick is not to instantiate the full Hessian matrix: if  is large, perhaps in the millions or billions
in the context of neural networks, then that might be impossible to store. Luckily, grad  (in the
jax/autograd/pytorch/tensorflow) already gives us a way to write an efficient Hessian-vector
product function. We just have to use the identity

where  is a new scalar-valued function that dots the gradient of  at  with the
vector . Notice that we're only ever differentiating scalar-valued functions of vector-valued
arguments, which is exactly where we know grad  is efficient.

Code  
Open in Colab

Materials  
Autodidact - a pedagogical implementation of Autograd
CSC321 Lecture 6
CSC321 Lecture 10
Why you should understand backpropagation :)
JAX autodiff cookbook

import jax.numpy as jnp

def hvp(f, x, v):

    return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)
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https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Autograd.ipynb
af://n194
https://github.com/mattjj/autodidact
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec06.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

	Matrix calculus
	Useful definitions and notations
	Matrix and vector multiplication
	Gradient
	Hessian 
	Jacobian
	Summary

	General concept
	Naive approach
	Guru approach
	Differentials
	Properties


	References
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5


	Automatic differentiation
	Idea
	Chain rule
	Univariate chain rule
	Multivariate chain rule

	Backpropagation
	Forward pass:
	Backward pass:

	Jacobian vector product
	Example: element-wise exponent

	Hessian vector product

	Code
	Materials


